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Abstract. Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil 10 

moisture presents challenges due to the nonlinearity of soil water transport and variability of boundary 

conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. 

In this study, we explore ten different network structures to uncover their mechanisms of data utilization 

and maximize the potential of deep learning for soil moisture prediction, including three basic feature 

extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the 15 

first time. We compare the predictive abilities and computational costs of the models across different soil 

textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain 

insights into their workings and attempt to advance our understanding of deep learning in soil moisture 

dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability 

of Long Short-Term Memory (LSTM) is well-suited. Besides, the improved accuracy achieved by feature 20 

attention LSTM (FA-LSTM) and the generative adversarial network-based LSTM (GAN-LSTM), along 

with the Shapley additive explanations (SHAP) analysis, help us discover the effectiveness of attention 

mechanisms and the benefits of adversarial training in feature extraction. These findings provide 

effective network design principles. The Shapley values also reveal varying data leveraging approaches 

among different models. The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 25 

illustrates differences in encoded features across models. In summary, our comprehensive study provides 

insights into soil moisture prediction and highlights the importance of the appropriate model design for 

specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning 

studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are 

open sourced. 30 
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1.Introduction 

Soil moisture is significant in simulating many hydrological processes since it controls the interaction 35 

of water and energy between the land surface and the atmosphere (Entin et al., 2000; Vereecken et al., 

2022). Accurately providing information on soil moisture dynamics is crucial for effective water 

resources planning and management, agricultural production, climate prediction, and flood disaster 

monitoring (Vereecken et al., 2008; Sampathkumar et al., 2013). However, caused by the randomness of 

rainfall and the nonlinear features of infiltration and evaporation processes (Guswa et al., 2002), soil 40 

moisture is highly variable and nonlinear in space and time (Heathman et al., 2012), which makes it 

difficult to forecast.  

Since various mainstream approaches have been applied for soil moisture dynamics prediction, a 

comprehensive study is needed to provide suitable solutions for different predicting tasks, encourage 

improvements on models and build confidence in this area. Traditionally, soil moisture dynamics 45 

prediction is widely based on physical models, such as the soil-plant-air model (Saxton et al., 1974), 

HYDRUS (Simunek et al., 2005), and CATHY (Camporese et al., 2015). Though these models are 

interpretable, they perform poorly in practical applications, because of the inestimable parameters (Gill 

et al., 2006) and inadequate description of physical processes (Li et al., 2022b). With the reduction in 

data acquisition costs and advancements in computation, there has been an increasing focus on data-50 

driven models. Initially, multiple linear regression (Qiu et al., 2003; Hummel et al., 2001) and empirical 

models (Azhar et al., 2011; Verma and Nema, 2021) are applied for soil moisture prediction. However, 

one nonnegligible problem is that these methods require calibrations and have limited generalization 

capabilities (Holzman et al., 2017; Jackson, 2003). Compared to these traditional data-driven models, 

machine learning methods appear to possess stronger data fitting ability. For instance, support vector 55 

regression (SVR) (Gill et al., 2006) and random forest (RF) (Prasad et al., 2019) have both shown 

satisfactory and robust results with low computing costs in soil moisture prediction. Additionally, the 

single-layer feedforward neural network with generalized inverse operation -- Extreme Learning 

Machine (ELM) (Huang et al., 2006) can precisely predict the future trends of soil moisture and support 

future irrigation scheduling. (Liu et al., 2014). 60 
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Currently, deep learning is the state-of-the-art data-driven method, which has made obvious 

improvements in many research areas (Lecun et al., 2015). Due to their powerful approximation ability, 

deep neural networks (DNNs) (Goodfellow et al., 2016) have been extensively researched from soil 

moisture descriptions (Cai et al., 2019; Prakash et al., 2018). Notably, recurrent neural networks (RNNs) 

(Pollack, 1990) excel at capturing temporal information in time series data and models sequential 65 

dependencies for predictions (Mikolov et al., 2011). This is consistent with the characteristics of soil 

moisture dynamics simulation. Fang et al. (2019) utilized Long Short-term Memory (LSTM) (Hochreiter 

and Schmidhuber, 1997) for soil moisture and received satisfactory results. From a different perspective, 

Convolution Neural Networks (CNNs) (LeCun, 1989) are capable of extracting features from training 

data in specific dimensions, making them widely used in dealing with 2-D (Albawi et al., 2018; Patil and 70 

Rane, 2021) or 1-D data (Severyn and Moschitti, 2015; Shi et al., 2015). Therefore, 1D-CNNs are applied 

in many hydrology researches(Hussain et al., 2020; Chen et al., 2021). Additionally, attention 

mechanisms enable the selection of critical information from multiple input features or model outputs, 

which can be visualized using attention weight (Ding et al., 2020; Li et al., 2022a). On this foundation, 

self-attention can model dependencies and aggregate features from inputs disregarding their distance 75 

(Vaswani et al., 2017), which shows great potential in soil moisture prediction. 

As various deep learning approaches focused on distinct mechanisms of data utilization, hybrid 

structures become a vital research area. On one hand, combining the feature importance processing 

methods -- attention mechanisms, with deep learning models, can indeed lead to improvements (Ahmed 

et al., 2021; Ding et al., 2019; Kilinc and Yurtsever, 2022). Li et al. proposed an attention-aware LSTM 80 

to estimate soil moisture and temperature and achieved better performance than LSTM alone (2022). In 

their work, three attention mechanisms help obtain the spatial-temporal feature vectors of LSTM inputs 

or outputs. On the other hand, the combinations of multiple neural networks tend to perform better than 

a single network alone (Semwal et al., 2021). The hybrid CNN-GRU model proposed by Yu et al.(2021) 

outperformed the independent CNN or GRU model in predicting root zone moisture. Besides, Li, et al. 85 

(2022) proposed EDT-LSTM, a stacked LSTM model based on the encoder-decoder structure (Sutskever 

et al., 2014) and residual learning (He et al., 2016). This achieved more stable results than a single LSTM. 

Regarding the optimization of training strategies, adversarial training in generative adversarial networks 

(GANs) (Goodfellow et al., 2014) can capture more information of real data. This helps to address the 
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problem of fuzzy prediction and provides a superior solution for weather forecast (Jing et al., 2019; 90 

Ravuri et al., 2021). 

 Therefore, it is essential to design effective and suitable neural network structures for soil moisture 

prediction tasks. In this study, we comprehensively evaluate the performance of various deep learning 

methods in soil moisture prediction, highlighting their key characteristics in terms of prediction accuracy 

and computational costs. The models evaluated in this research range from machine learning models 95 

such as RF, ELM, and SVR to basic deep learning models, including 1D-CNN, LSTM, and the Encoder 

of Transformer(Vaswani et al., 2017), and hybrid deep learning models, including CNN-LSTM, LSTM-

CNN, CNN-with-LSTM, FA-LSTM, TA-LSTM, FTA-LSTM, and GAN- LSTM. Notably, the Encoder 

of Transformer is first developed in soil moisture prediction, with CNN-LSTM, LSTM-CNN, FA-LSTM, 

TA-LSTM, FTA-LSTM, and GAN-LSTM first applied and systematically compared for soil moisture. 100 

To gain insights into their workings and provide a thorough analysis of why some methods perform better, 

we utilize the SHAP (Lundberg et al., 2018) method to demonstrate the importance of features in different 

models and employ t-SNE visualization (Van der Maaten and Hinton, 2008) to show the encoded features 

across models. The systematical assessment of the models is carried out across multiple sites at 5 depths. 

For forecasting soil moisture, the utilized data include meteorological data, soil temperature data, and 105 

soil moisture content data from previous days, as these inputs are closely associated with evaporation 

and infiltration processes.  

In the remainder of this article, Sect. 2 describes the data used and the deep learning background; Sect. 

3 presents a detailed description of the participating methods; Sect. 4 analyzes comparison results and 

discusses the interpretability of the models. The conclusion is drawn in Sect. 5. 110 

 

2. Data Description and Backgrounds  

2.1 Data Description 

To create a comprehensive evaluation under different soil types, in-situ observations at ten different 

sites are downloaded from the International Soil Moisture Network (ISMN) 115 

(https://ismn.geo.tuwien.ac.at/en/), including the Monahans-6-ENE (Monahans), Necedah-5-WNW 

(Necedah), Falkenberg, AAMU-jtg (AAMU), Cullman-NAHRC (Cullman), Cape-Charles -5-

ENE(Cape), LittleRiver, Spickard, Weslaco, and UpperBethlehem (UB). Detailed site information is 
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provided in Table 1, and their spatial locations are shown on a world map in Fig. 1. The temporal changes 

of soil moisture at various depths are also drawn in Fig. 1. 120 

This study builds individual predictive models for each site and depth, disregarding the inclusion of 

static properties such as land cover, soil hydraulic properties, and topography. All deep learning models 

in this study utilize the past four days' data to forecast the soil moisture content on the fifth day. This 

means the input vector 𝑰, {𝒙௧ିଷ, 𝒙௧ିଶ, 𝒙௧ିଵ, 𝒙௧} is used to predict the target value 𝑦௧ , that is the soil 

moisture 𝑆𝑀௧  at time t. The input data 𝒙௧  at time t consists of the past soil moisture (SM), soil 125 

temperature (ST), and meteorological data including precipitation (P), atmospheric temperature(AT), 

long-wave radiation(LR), short-wave radiation(SR), wind speed(WS), and relative humidity(RH)), 𝒙௧ =

{𝑃௧ , 𝑇௧ , 𝐿𝑊௧ , 𝑆𝑊௧ , 𝑅𝐻௧ , 𝑊𝑆௧ , 𝑆𝑇௧ , 𝑆𝑀௧ିଵ } . For machine learning, we only utilize the 𝒙௧  to generate 

predictions. These features are selected as inputs because they are closely related to the soil 

evapotranspiration, infiltration processes, and the internal behavior of the soil. Since groundwater level 130 

observations are difficult to obtain, changes in the lower boundary conditions are excluded from the 

inputs. Meteorological data is downloaded from NASA's website (https://power.larc.nasa.gov/data-

access-viewer/), while soil moisture and soil temperature data are obtained from the ISMN. 

 

Table 1. Summary of main characteristics of ten sites. 135 

 
Sand Silt Clay Period Latitude Longitude 

Monahans-6-ENE 83 6 11 2010.4.21-2022.7.19 31.62190 102.80710 

Necedah-5-WNW 83 11 6 2009.10.13-2022.11.26 44.06040 -90.17370 

Falkenberg 73 21 6 2003.1.17-2020.6.30 52.16694 14.12417 

AAMU-jtg 53 22 25 2010.2.6-2022.11.18 34.78300 -86.55000 

Cullman-NAHRC 49 27 24 2006.5.18-2022.11.30 34.20000 -86.80000 

Cape-Charles-5-ENE 49 27 24 2011.6.15-2022.11.1 37.29070 -75.92700 

LittleRiver 47 30 23 2005.10.18-2020.1.1 31.50000 -83.55000 

Spickard 35 41 24 2010.10.8-2022.11.26 40.25000 -93.71700 

Weslaco 34 45 21 2017.1.1-2021.5.1 26.16000 -97.96000 

UpperBethlehem 32 38 30 2008.9.15-2010.5.1 17.71700 -64.80000 
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Figure 1. The spatial locations and soil moisture content time series at various depths of ten sites.  

 

2.2 Deep Learning Backgrounds 140 

Deep learning enhances the complexity and learning capability of traditional machine learning 

methods by adding multiple layers (Kamilaris and Prenafeta-Boldú, 2018). At each layer, input signals 

are weighted through the connections of each neuron and subsequently activated by activation functions 

(Schmidhuber, 2015). Deep learning discovers intricate structures in training data by utilizing 

backpropagation to guide the machine in adjusting its internal parameters (Lecun et al., 2015).  145 

In this study, the primary challenge in soil moisture prediction is processing the time-series data with 

specific dimensions and simulating soil moisture dynamics with high spatiotemporal variability. Given 

the diversity of neural networks, numerous methods have the potential to deal with specific time-series 

data. CNNs can extract local temporal information from the data by sliding convolutional kernels along 

the time dimension. On the other hand, RNNs excel at capturing the overall temporal sequence 150 

information. Additionally, self-attention has the potential to associate inputs and make predictions, 

making them capable of handling sequence data effectively. These three types of networks can be 

regarded as fundamental feature extractors in deep learning. Furthermore, hybrid deep learning models 

integrate the characteristics of multiple models, enhancing their prediction capacities (Yu et al., 2021). 

Combinations of CNNs, RNNs, and attention mechanisms have been widely utilized in many studies. 155 

Besides, employing specified training strategies with suitable network structures can also improve 

prediction performance. For instance, GANs enable the training objective of neural networks to go 

beyond minimizing data mean squirt error and utilize adversarial training to fully capture data regularities. 
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By designing appropriate network structures and training strategies, it is possible to further improve 

prediction accuracy. 160 

It is necessary to conduct a comprehensive evaluation to analyze the internal combining meaning of 

models and decide the most suitable combination rule for soil moisture prediction. With the collected 

data in 2.1, it is possible to deeply explore the prediction abilities of the deep learning models. We 

evaluate models from the perspectives of prediction accuracy and computational costs to provide a 

reference for soil moisture dynamics predictions. Further research on model interpretability can provide 165 

insights into how the model structure influences the utilization of data, leading to a more effective design 

of the model structure. 

 

3.Models and Methodology 

Three machine learning models and seven deep learning models take part in this comparative research. 170 

Introductions to each model are provided below, along with key references for interested readers. The 

parameters of each model are recorded in Appendix A. 

 

3.1 Machine Learning Methods 

In this study, machine learning models Random Forest (RF), Extreme Learning Machine (ELM), and 175 

Support Vector Machine (SVM) are applied to compare with the deep learning models as a benchmark. 

Random Forest, proposed by Breiman (Breiman, 2001), is used for regression and classification tasks, 

and has gained popularity for its high accuracy. RF works by constructing multiple decision trees on 

randomly sampled subsets of the training data. Each tree is trained on a random subset of features, and 

the final prediction is made by averaging the predictions of the individual trees. This approach reduces 180 

overfitting and increases model stability. For soil moisture prediction, RF has proven to be a stable and 

reliable method (Carranza et al., 2021). 

Extreme Learning Machine (Huang et al., 2006) utilizes a single-layer feedforward neural network as 

its foundation. ELM achieves fast learning speed and strong generalization ability by employing random 

input layer weights and biases and applying generalized inverse matrix theory to calculate the output 185 

layer weights. The algorithm has been applied in various fields and has shown promising results. Liu et 

al.(2014) employed ELM to predict the large-scale soil moisture in Australian orchards. The results 

demonstrated that the model was capable of accurate forecasting. 
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Support Vector Machine (Cortes and Vapnik, 1995) was proposed for applications in classification 

and regression. It aims to find the maximum-margin hyperplane that best separates sample points. To 190 

make this hyperplane more robust in high-dimensional feature spaces, SVM uses kernel functions to 

perform nonlinear mapping and create a new feature space where the data can be linearly separable. The 

algorithm then finds the optimal classification hyperplane with the maximum margin. SVMs have 

achieved great success in various fields. Gill et al. (2006) applied SVM to soil moisture prediction and 

compared it with DNNs. The results showed that SVM was suitable for soil moisture content prediction. 195 

Support Vector Regression (SVR) is a variant of SVM that is specifically designed for regression tasks, 

which is applied in this study. 

For machine learning, 𝒙௧  and  𝑦௧  represents the input feature and target object, respectively. The 

input data corresponds one-to-one in time to the target and serves as both the input and output of the 

machine learning models. The prediction accuracy of machine learning serves as a comparison for deep 200 

learning models. Hyperparameters used in models are recorded in Appendix A.  

 

3.2 Basic Deep Neural Networks 

 

Figure 2. Network structures of the LSTM(a), the 1D-CNN(b), and the proposed Encoder(c) inspired by Dosovitskiy 205 

et al.(2020) with the self-attention structure (d)for soil moisture prediction. 
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3.2.1 LSTM 

RNNs (Pollack, 1990) operate by recursing in the direction of sequence progression, with all nodes in 

the network being chained together. These unique properties make RNNs effective in processing 210 

sequence data and extracting temporal information, which has led to breakthroughs in natural language 

processing (Connor et al., 1994). The ability of RNNs to model temporal dependencies is suitable for 

predicting soil moisture.  

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) neural networks, were 

proposed to address the limitations of traditional RNNs. LSTM can overcome the issue of gradient 215 

vanishing and memorize more useful information through a special unit, which is called the cell state. 

Thus, LSTM operates as follows: 

𝑖௧ = 𝜎(𝑊௜ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) (1)

𝑓௧ = 𝜎൫𝑊௙ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯ (2)

𝑜௧ = 𝜎(𝑊௢ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) (3)

𝐶ሚ௧ = 𝑡𝑎𝑛ℎ(𝑊௖ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௖) (4)

𝑐௧ = 𝑓௧ ∙ 𝑐௧ିଵ + 𝑖௧ ∙ 𝐶ሚ௧ (5)

ℎ௧ = 𝑜௧ ∙ 𝑡𝑎𝑛ℎ(𝑐௧) (6)

where 𝑊௜ and 𝑏௜ are the parameters for the input gate, 𝑊௙ and 𝑏௙ are the parameters for the forget 

gate, 𝑊௢  and 𝑏௢ are the parameters for the output gate, 𝑊௖  and 𝑏௖ are used for cell state updating; 𝜎 

is the activation function.  220 

We generate the time-dependent hidden states 𝑯, {𝒉௧ିଷ, 𝒉௧ିଶ, 𝒉௧ିଵ, 𝒉௧}  from 

input 𝑰, {𝒙௧ିଷ, 𝒙௧ିଶ, 𝒙௧ିଵ, 𝒙௧} through the LSTM. After sequentially processing all inputs in the LSTM, 

the last hidden state 𝒉௧ of the sequential output is used as the prediction for network training, as depicted 

in Fig. 2a. This is because the input features at each time step can be encoded in the last hidden state. 

The parameters in this model are recorded in Appendix A. 225 

 

3.2.2 1D-CNN 
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CNNs (LeCun, 1989) were originally applied for image recognition. The convolution and pooling 

layers in CNNs can extract the distinguishing features of the given data while reducing the amount of 

data to be processed (Ajit et al., 2020). Consequently, CNNs are highly effective in processing data that 230 

come in the form of multiple arrays.  

For time series data, 1D-CNNs can extract local temporal features via convolution kernels that slide 

along the time dimension. 1D-CNNs have demonstrated success in speech and natural language 

processing applications (Abdel-Hamid et al., 2014; Severyn and Moschitti, 2015). Hence, 1D-CNNs are 

capable of soil moisture prediction tasks. The complete forward-propagation process of a simple 1D-235 

CNN for soil moisture prediction is illustrated in Fig. 2b. Given that the input vector 

𝐼, {𝒙௧ିଷ, 𝒙௧ିଶ, 𝒙௧ିଵ, 𝒙௧} , two convolution layers are employed in the 1D-CNN architecture. The 

convolution kernel size (Kernel_size) is set to 2, with a stride of 1. Specific parameters are listed in Table 

A1. To preserve the information of the data, pooling layers are intentionally omitted.  

 240 

3.2.3 Encoder 

The self-attention mechanism can model the dependencies and aggregate features from inputs. 

Therefore, a stacking structure of self-attention mechanisms like Transformer  (Vaswani et al., 2017) 

can achieve the functions of CNNs and RNNs without iterations. This provides a novel way for 

predictions. In this study, we utilize the encoder structure of Transformer (Vaswani et al., 2017), Encoder, 245 

as depicted in Fig. 2c, to predict soil moisture. The self-attention is shown in Fig. 2d, which operates as 

follows: 

𝑆஺ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
൫𝑊ொ𝐼ா൯(𝑊௄𝐼ா)்

ඥ𝑑௞

ቇ (7)

𝑆௙(ூಶ) = 𝑆஺⨂𝑉 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
൫𝑊ொ𝐼ா൯(𝑊௄𝐼ா)்

ඥ𝑑௞

ቇ 𝑊௏𝐼ா  (8)

where 𝑊௄ , 𝑊௏  and 𝑊ொ  are the key, value, and query parameter matrices, respectively; 𝐼ா  is the 

Encoder input; 
ଵ

ඥௗೖ
  is the scaling factor, 𝑑௞ = 4. 

 The outputs generated by the self-attention mechanism correspond to the inputs one-to-one. In this 250 

study, a "class token" vector 𝒙௖௟௔௦௦ is introduced as additional input to start the prediction process. The 

class token is randomly initialized and can be trained, serving as the fifth input. It enables aggregate 

global features from all other inputs and avoids bias towards a specific time step in the sequence. 

However, the self-attention mechanism ignores the temporal order of the inputs. To address this issue, 
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we incorporate positional encoding to preprocess the inputs. Both the learnable positional encoding and 255 

sine cosine coding are tested in this research. The sine cosine positional encoding is defined as: 

𝑃𝐸(௣௢௦ଵ,ଶ௣௢௦ଶ) = 𝑠𝑖𝑛 ൭
𝑝𝑜𝑠1

10000
ଶ௣௢௦ଶ

ௗ೘೚೏೐೗

൱ (9)

𝑃𝐸(௣௢௦ଵ,ଶ௣௢௦ଶ ) = 𝑐𝑜𝑠 ൭
𝑝𝑜𝑠1

10000
ଶ௣௢௦ଶ

ௗ೘೚೏೐೗

൱ (10)

where the parameters 𝑝𝑜𝑠1 and 𝑝𝑜𝑠2 represent the positions of the first and second dimensions of the 

input, respectively. Here, 𝑑௠௢ௗ௘௟ = 8 denotes the parameter of self-attention, which is equal to the input 

features at each time step.  

The encoded position vectors 𝑃𝐸  are added to the original inputs before feeding them into the 260 

Encoder. With 𝑃𝐸, the input of the Encoder is defined as follows: 

𝐼ா = {𝒙௧ିଷ, 𝒙௧ିଶ, 𝒙௧ିଵ, 𝒙௧ , 𝒙௖௟௔௦௦} + 𝑃𝐸 (11)

 

3.3 Hybrid Deep Learning Models 

3.3.1 Hybrid structure of CNN and LSTM 

In this section, three connecting ways of CNNs and LSTMs, CNN-LSTM, LSTM-CNN, and CNN-265 

with-LSTM, are considered. These hybrid models possess advanced capabilities in handling diverse 

types of data, generally leading to improved prediction accuracy. To ensure a rigorous comparison with 

the previous 1D-CNN and LSTM models, the parameters of the CNN and LSTM layers in our hybrid 

models are kept as consistent as possible with the 1D-CNN and LSTM models before. The detailed 

parameter setting information can be found in Table A1. 270 
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Figure 3. The framework of the proposed CNNs and LSTMs hybrid models: CNN-LSTM(a), LSTM-CNN(b), and 

CNN-with-LSTM(c).  

 

CNN-LSTM 275 

Generally, the CNN-LSTM model is comprised of CNN layers followed by LSTM layers. The input 

data first passes through convolution layers to better extract local features in the sequence data. Then 

LSTM layers are used to associate the time-series extracted features. Therefore, this kind of model excels 

at handling the input data in image format, which has been widely utilized in prediction tasks, yielding 

positive outcomes in various applications (Semwal et al., 2021). In our soil moisture prediction task, 280 

CNN-LSTM consists of 2 convolution layers and an LSTM layer, which is shown in Table A1. As we 

mentioned in Section 3.2, the last hidden state 𝒉௧ is still applied as the prediction. Fig. 3a depicted the 

structure of CNN-LSTM applied in this research. 

 

LSTM-CNN: 285 

In contrast to the CNN-LSTM model, the LSTM-CNN model first utilizes LSTM layers to associate 

the time series data and output high-dimensional related hidden states. Subsequently, convolution layers 
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are employed to extract the features of these time-dependent hidden states. This model has also been 

widely adopted in various applications (Xia et al., 2020). In this study, LSTM-CNN for soil moisture 

prediction consists of an LSTM layer and 2 convolution layers sequentially. The structure of LSTM-290 

CNN can be seen in Fig. 3b. Detailed layers and parameters of this model are presented in Table A1. 

 

CNN-with-LSTM: 

CNN-with-LSTM is a model that employs the parallel combination of both CNN and LSTM, merging 

their outputs through concatenation, and uses a fully connected network for regression analysis. By 295 

combining the feature extraction capabilities of CNN with the time series memory ability of LSTM, this 

model captures both the local and global temporal characteristics of the input data. This kind of hybrid 

structure has been used in soil moisture prediction and achieved satisfactory results(Yu et al., 2021). In 

our work, CNN-with-LSTM is comprised of an LSTM layer and 2 convolution layers parallelly, and the 

structure is depicted in Fig. 3c. Table A1 lists the network structures of the CNN and LSTM models in 300 

addition to the parameter settings.  

 

3.3.2 Hybrid Structure of Attention and LSTM 

To enhance the accuracy of deep learning models and address the issue of lack of interpretability, 

attention mechanisms have been incorporated into LSTM models to weigh the importance of different 305 

input and output vectors dimensions (Li et al., 2022a; Ding et al., 2020; Xia et al., 2020). Attention 

mechanisms are commonly used in combination with other neural networks as a form of pre-processing 

or post-processing. Through training, attention mechanisms dynamically generate spatiotemporal 

attention importance weights to selectively focus on critical parts of the input or output. According to the 

specific roles of the attention mechanisms, the hybrid models can be classified into three categories: FA-310 

LSTM (a feature attention mechanism with LSTM), TA-LSTM (a temporal attention mechanism with 

LSTM), and FTA-LSTM (an LSTM combines both feature and temporal attention mechanisms). Ding 

et al.(2020) conducted experiments on this three kind of hybrid models in flood prediction, confirming 

the effectiveness of incorporating LSTM with attention mechanisms.  
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 315 

Figure 4. Framework of the proposed FA-LSTM hybrid models (a), the feature attention mechanism (FA) (b), and 

the temporal attention mechanism (TA) (c), inspired by Ding et al.(2020). 

 

FA-LSTM: 

FA-LSTM applies an attention mechanism to assign weights for distinct features in the input vector. 320 

In this study, for soil moisture prediction, the feature attention mechanism in FA-LSTM processes the 

input vector  𝑰, {𝒙௧ିଷ, … , 𝒙௧} , where 𝒙௧ = {𝑓1௧ , 𝑓2௧ , … , 𝑓𝑛௧  }  and generate the weighted output 

{𝒙௧ିଷ
ᇱ , … , 𝒙௧

ᇱ }. Through the attention mechanism, the output 𝒙௧
ᇱ  remains the same dimension size as the 

input 𝒙௧. The feature attention importance weight α௧ and attention mechanism output 𝒙௧
ᇱ  are defined 

as follows: 325 

α௧ = 𝐹𝐴(𝒙௧) (12)

𝒙௧
ᇱ = α௧ ⊗ 𝒙௧ (13)

Fig. 4b also shows the operation of the feature attention mechanism. The FA-LSTM model consists of 

an LSTM and a feature attention mechanism for input preprocessing, as detailed in Table A1. 

 

TA-LSTM: 

TA-LSTM utilizes the temporal attention mechanism to weigh the importance of LSTM output vectors 330 

across time steps. This enables the model to concentrate on the most relevant hidden states, potentially 

enhancing its performance on tasks that involve temporal modeling. The temporal attention mechanism 

is shown in Fig. 4c. In our work, the output vector 𝑯௔௧௧ , which is obtained through the temporal attention 
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mechanism in TA-LSTM, is the weighted sum of all states in 𝑯, {𝒉௧ିଷ, 𝒉௧ିଶ, 𝒉௧ିଵ, 𝒉௧}. The temporal 

attention weight 𝛽 and attention mechanism output 𝑯௔௧௧  can be defined as: 335 

𝛽 = 𝑇𝐴(𝑯) (14)

𝑯௔௧௧ = ෍ 𝛽௜ ⊗ 𝒉௜

ସ

௜ୀଵ

 (15)

Compared to LSTM, the difference with TA-LSTM lies in the post-processing of the LSTM output. 

LSTM utilizes the last hidden state output for prediction, while TA-LSTM employs temporal weighting 

to utilize all hidden state outputs. Table A1 contains the network structure and parameters information. 

 

FTA-LSTM: 340 

FTA-LSTM is the model that combines both feature and temporal attention mechanisms, as illustrated 

in Fig. 4a. It applies feature attention mechanism before the LSTM layer to assign weights for the input 

features, and the temporal attention mechanism after the LSTM layer to weigh the importance of the 

LSTM output vectors of different time steps. The parameters of FTA-LSTM can be found in Table A1. 

 345 

3.3 GAN-LSTM 

GANs (Goodfellow et al., 2014) comprise a generator and a discriminator. The generator is designed 

to generate predictions that are similar to the truth, while the discriminator tries to distinguish between 

the truth and the predictions. The unique network structure and adversarial training of GANs make them 

highly effective in various fields, particularly in dealing with fuzzy prediction (Jing et al., 2019). Thus, 350 

GANs offer a promising way to predict soil moisture, potentially leading to accurate results in real 

situations. For predicting soil moisture, the GAN-LSTM model is used, where the generator G employs 

an LSTM model capable of processing time series data, and the discriminator D uses a single-layer 

feedforward neural network, similar to the work of Li et al. (2020). Alternating adversarial training is 

performed between G and D, meaning that one of them is trained while keeping the other one fixed. The 355 

structure and training strategies of GAN-LSTM are shown in Fig. 5. 
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Figure 5. The framework of the proposed GAN-LSTM model. 

 

The training objective of the discriminator D is to distinguish between predictions generated by the 360 

generator G and the ground truth, by minimizing the loss function ℒௗ. The binary cross-entropy loss is 

utilized as the similarity evaluation metric, with the objective of training D to output 1 when presented 

with ground truth as input and 0 when presented with predictions as input: 

ℒௗ = ℒ௕௖௘(𝑑([𝑆𝑀௧ିସ, . . , 𝑆𝑀௧ିଵ, 𝑦௧]), 1) + ℒ௕௖௘(𝑑([𝑆𝑀௧ିସ, . . , 𝑆𝑀௧ିଵ, 𝑦ො௧]), 0) (16)

where ℒ௕௖௘ is the binary cross-entropy loss, which is defined as: 

ℒ௕௖௘(�̂�, 𝑝) = −𝑝𝑙𝑜𝑔(�̂�) − (1 − 𝑝)𝑙𝑜𝑔(1 − �̂�) (17)

where p denotes the label (0 or 1) and �̂� denotes the logit value between 0 and 1. 365 

For generator G, there are two training objectives: first, to generate soil moisture dynamics predictions 

that are accurate and consistent with the truth, which is achieved by minimizing the fitting error of the 

soil moisture content data, denoted as ℒ௠௦௘ . Second, to deceive D, which is achieved by minimizing the 

binary cross-entropy loss ℒ௕௖௘ between the predictions and the truth in D. The output of D should be 

close to 1 when inputting the G predictions into D, ensuring that the prediction is close to the truth. 370 

Therefore, we train G by minimizing the following loss function ℒ௚: 

ℒ௚ = ℒ௠௦௘(𝑦௧ , 𝑦ො௧) + 𝜆௕௖௘ℒ௕௖௘(𝑑([𝑆𝑀௧ିସ, . . , 𝑆𝑀௧ିଵ, 𝑦ො௧]), 1) (18)

where 𝜆௕௖௘  is the hyperparameter that controls the importance of the second term. Here we determine 

𝜆௕௖௘ to be 1 × 10ି଻ through manual testing. For adversarial training in our GAN-LSTM, the parameter 

update ratio of G and D in the model is 3:1, that is, every time G is updated (the learning rate is set to 

0.0005), D will be updated 3 times (the learning rate is set to 0.001). The network structure parameters 375 

of GAN-LSTM are recorded in Table A1. 

 

https://doi.org/10.5194/hess-2023-177
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



17 
 

4. Results and Discussions 

This study evaluates the performance of 3 machine learning methods and 10 deep learning models in 

predicting soil moisture at 10 sites and 5 depths. To evaluate the model's ability for predicting over time 380 

series, we examined forecasts for 1, 3, and 7 days ahead. When making predictions longer than 1 day, 

we adopted iterative predictions. Three standard metrics, 𝑅ଶ, mean absolute error (MAE), and root mean 

square error (RMSE) are used to evaluate the performance of the models. 𝑅ଶ represents how well the 

model captures the variability in data, while MAE and RMSE measure the accuracy of the model's 

predictions. These metrics are calculated as follows: 385 

𝑅ଶ = 1 −
∑ (𝑦௜ − 𝑦ො௜)

ଶே
௜ୀଵ

∑ (𝑦௜ − 𝑦ത௜)
ଶே

௜ୀଵ

 (19)

MAE =
∑ |𝑦௜ − 𝑦ො௜|

ே
௜ୀଵ

𝑁
 (20)

RMSE = ඨ
∑ (𝑦௜ − 𝑦ො௜)

ଶே
௜ୀଵ

𝑁
 (21)

where 𝑦௜  denotes the ground truth; 𝑦ො௜  denotes the model prediction,   𝑦ത௜  denotes the mean of the 

ground truth, and N denotes the sample size. 

The collected data in Section 2 is split into training, validation, and test sets in a 6:2:2 ratio in time 

order. The training set is used to train the models with a learning rate of 0.001 unless stated otherwise. 

We train the deep learning models for at least 1500 epochs, with a batch size of 50. In each epoch, 20 390 

batches are used for training. The validation set is employed to determine whether the deep learning 

model should be updated. If the trained model performs worse on the validation set compared to the 

previous model, the previous model is retained. Finally, the test set is utilized to evaluate and compare 

the accuracy of the trained models. To ensure statistical robustness, each final result is obtained by 

averaging the outcomes of 25 repetitions of the training process. 395 

 

4.1 Comparisons of Machine Learning and LSTM 

This section compares the machine learning models with the deep learning model, represented by 

LSTM. Table 2 summarizes the 𝑅ଶ between the soil moisture predictions of the three machine learning 

methods and the ground truth at ten sites and five depths for the following 1, 3, and 7 days. The results 400 

show that all three methods perform well on short-term (1-3 days) soil moisture forecasts, but their 
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performance tends to diverge when predicting at the lead time of 7 days. Among these three, RF is the 

most stable and best-performing model. 

Fig. 10(a-e) compares the RMSE of the soil moisture predictions of the machine learning models and 

LSTM at different depths for 1, 3, and 7 days ahead at Cape-Charles. It reveals that LSTM outperforms 405 

the three machine learning models in terms of prediction accuracy and stability, which suggests that deep 

learning has a better capability of processing time series data for soil moisture dynamics simulation than 

traditional machine learning. 

Machine learning models are limited in handling inputs from multiple time steps when processing time 

series data. Therefore, while they exhibit proficiency in short-term predictions, they may not perform 410 

well in long-term prediction tasks and demonstrate comparatively lower accuracy and stability than deep 

learning models. Nevertheless, a notable advantage of machine learning models is that they require little 

training time, enabling rapid deployment, which incurs lower computational costs compared to deep 

learning models. 

 415 

 

Figure 6. Top: RMSE comparisons between RF, ELM, SVR, and LSTM at the Cape site at 5 depths: 0.05m(a), 

0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). 

 

Table 2. The values of 𝑅ଶ between the predictions (1, 3, and 7 days) of RF, ELM, and SVR and the ground truth 420 

for ten sites at five depths. 

depth/m RF ELM SVR 
Rଶ Rଶ Rଶ 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 

0.05 0.871  0.783  0.659  0.816  0.660  0.488  0.874  0.767  0.626  
0.10 0.881  0.812  0.708  0.863  0.718  0.552  0.874  0.753  0.548  

0.20 0.878  0.813  0.713  0.874  0.689  0.536  0.865  0.687  0.609  

0.50 0.892  0.827  0.722  0.875  0.730  0.586  0.832  0.599  0.381  

1.00 0.812  0.754  0.692  0.955  0.856  0.521  0.719  0.688  0.378  
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4.2 Comparisons of 1D-CNN, LSTM and Encoder 

In this section, we conduct a comparative analysis of three basic deep learning networks. We evaluate 

their prediction performance by assessing both prediction accuracy and computational costs. The values 425 

of 𝑅ଶ between the soil moisture predictions generated by the three models and the ground truth across 

ten sites and five depths are presented in Table 3. Additionally, Fig. 7(a-e) displays the RMSE for soil 

moisture predictions at the LittleRiver site.  

The results reveal that the LSTM model achieves the highest prediction accuracy, followed by the 1D-

CNN model and subsequently the Encoder model. Notably, LSTM and Encoder are more stable when 430 

making long-term or deep soil moisture predictions, while 1D-CNN is better suited for short-term and 

shallow prediction tasks. This aligns with the inherent characteristics of the three models. In essence, 

LSTM is designed to model temporal dependencies in sequence data, emphasizing global features. 

Encoder operates by modeling relationships in input time series without iterations and highlights 

important features by self-attention weighting. These characteristics prevent overfitting in the LSTM and 435 

Encoder, resulting in stability in long-term predictions. In contrast, 1D-CNN excels at extracting and 

expressing local features, which facilitates it to capture the connections between subtle feature changes 

and their corresponding outcomes. This capability allows for adaptation to shallow soil moisture 

prediction tasks with significant variations. 

Fig. 7g shows the training epochs required for each model, while Fig. 7h illustrates the time taken for 440 

100 epochs. The 1D-CNN demonstrates the fastest training speed and achieves early convergence. 

Conversely, LSTM shows slower training speed attributed to its iterations. The Encoder trains quickly 

but converges at a slower pace than LSTM, resulting in a similar total training time. In summary, although 

1D-CNN offers the lowest computational costs, LSTM has been proven to be the most appropriate for 

soil moisture prediction tasks among the three with the highest accuracy. 445 
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Figure 7. Top: RMSE comparisons between CNN, LSTM, and Encoder at the LittleRiver site at 5 depths: 0.05m(a), 

0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time (h) for 

three models. 

 450 

Table 3. The values of 𝑅ଶ between the predictions (1, 3, and 7 days) generated by CNN, LSTM and Encoder, and 

the ground truth across ten sites at five depths. 

depth/m CNN LSTM Encoder 
Rଶ Rଶ Rଶ 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 

0.05 0.907  0.822  0.685  0.916  0.841  0.719  0.896  0.819  0.693  
0.10 0.931  0.866  0.762  0.924  0.854  0.753  0.909  0.844  0.745  

0.20 0.939  0.870  0.744  0.937  0.856  0.739  0.926  0.866  0.767  

0.50 0.920  0.828  0.686  0.941  0.881  0.754  0.928  0.871  0.775  

1.00 0.878  0.728  0.348  0.951  0.895  0.760  0.934  0.856  0.679  

 

4.3 Comparisons of CNN and LSTM Hybrid Models 

This section compares the three CNN and LSTM hybrid models (LSTM-CNN, CNN-LSTM, and 455 

CNN-with-LSTM) across 10 sites in terms of prediction accuracy and computational costs. Table 4 

presents the e 𝑅ଶ values between the soil moisture predictions generated by the three hybrid models and 

the ground truth across ten sites at five depths. It can be observed that the prediction accuracy of these 

models is comparable, with LSTM-CNN slightly outperforming the others. Moreover, Fig. 8(a-e) shows 

the RMSE results of hybrid models and LSTM at the Spickard site, indicating that the hybrid models do 460 

not exhibit obvious advantages over the standard LSTM.  

Specifically, the three models are hybrids of CNN and LSTM with varying incorporation degrees. 

According to their combination ways, we can infer that the models excel in handling different types of 
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data and place different emphases on data characteristics. The CNN-LSTM appears to prioritize local 

features and model long-distance dependencies, while LSTM-CNN focuses on global features and 465 

context information. CNN-with-LSTM simultaneously considers both local features and temporal 

information for predictions. These integrations increase the complexity and enhance the expression 

capacities of models, but their applications should depend on the input data and prediction task. In the 

case of soil moisture prediction, the benefits of this combination approach are not significant. 

Fig. 8g and Fig. 8h display the computational costs of the three hybrid models. It is evident that the 470 

CNN-LSTM shows the fastest training speed and the lowest computational costs, owing to its 

convolution layers for input data pre-processing. Besides, the computational costs of LSTM-CNN are 

higher than CNN-with-LSTM. Overall, compared to LSTM and 1D-CNN, we could draw the conclusion 

that the hybrid models have limited practical values in soil moisture prediction. 

 475 

Figure 8. Top: RMSE comparisons between LSTM-CNN, CNN-LSTM and CNN-with-LSTM at the Spickard site 

at 5 depths: 0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and 

training time (h) for three models. 

 

Table 4. The values of 𝑅ଶ between the predictions (1, 3, and 7 days) of LSTM-CNN, CNN-LSTM, and CNN-with-480 

LSTM and the ground truth for ten sites at five depths 

depth/m LSTM-CNN CNN-LSTM CNN-with-LSTM 
Rଶ Rଶ Rଶ 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 

0.05 0.907  0.827  0.701  0.899  0.815  0.689  0.899  0.821  0.694  
0.10 0.926  0.854  0.737  0.920  0.837  0.705  0.905  0.828  0.720  

0.20 0.931  0.838  0.703  0.923  0.842  0.712  0.921  0.842  0.722  

0.50 0.933  0.856  0.719  0.926  0.857  0.741  0.920  0.851  0.734  

1.00 0.926  0.823  0.581  0.901  0.795  0.570  0.897  0.788  0.549  
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4.4 Comparisons of Attention Mechanisms and LSTM Hybrid Models 

To investigate the impact of different attention mechanisms on models, this section compares these 

three models: FA-LSTM, TA-LSTM, and FTA-LSTM. Fig. 9(a-e) displays the RMSE values of the soil 485 

moisture predictions for 1, 3, and 7 days ahead generated by these three models and the standard LSTM 

at Weslaco. Table 5 records the values of 𝑅ଶ between the soil moisture predictions of three models and 

the ground truth across ten sites and five depths.  

 

 490 

Figure 9. Top: RMSE comparisons between FA-LSTM, TA-LSTM, and FTA-LSTM at the Weslaco site at 5 depths: 

0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time 

(h) for three models. 

 

Table 5. The values of 𝑅ଶ between the predictions (1, 3, and 7 days) of FA-LSTM, TA-LSTM, and FTA-LSTM 495 

and the ground truth for ten sites at five depths. 

depth/m FA-LSTM TA-LSTM FTA-LSTM 
Rଶ Rଶ Rଶ 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 

0.05 0.918  0.856  0.746  0.903  0.825  0.700  0.910  0.845  0.736  
0.10 0.932  0.871  0.783  0.908  0.820  0.714  0.919  0.848  0.761  

0.20 0.945  0.887  0.794  0.930  0.856  0.718  0.920  0.841  0.711  

0.50 0.949  0.908  0.824  0.927  0.865  0.754  0.927  0.874  0.775  

1.00 0.959  0.916  0.805  0.910  0.815  0.577  0.910  0.827  0.583  

 

Based on the results, the prediction accuracy of the three models ranked from high to low is FA-LSTM, 

FTA-LSTM, and TA-LSTM in most situations. It can be found that the feature attention mechanism has 

a stable gain effect on LSTM, potentially because it assigns the appropriate feature importance weights 500 
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to various influencing factors, especially in deep soil moisture prediction tasks. On the contrary, the 

improvement of the temporal attention mechanism is not evident and may lead to deterioration. TA-

LSTM differs from LSTM in its output post-processing, as it is trained to weigh the LSTM output at each 

time step to make predictions. The reason why TA-LSTM is worse may be that LSTM already encodes 

enough past features for predictions in the last hidden state. Moreover, the FTA-LSTM model, which 505 

combines both feature and temporal attention mechanisms, is the most complex but not necessarily the 

optimal one among the three. From the results, we can also infer the effective feature learning ability of 

attention mechanisms. 

According to Fig. 9(g-h), attention mechanisms introduce some acceptable computational costs. 

Notably, FA-LSTM requires more training steps to reach convergence. However, despite this 510 

computational requirement, we believe that the implementation of FA-LSTM is still advantageous for 

soil moisture prediction tasks.  

Fig. 10 provides visualizations of the input feature importance and temporal importance weights 

learned by FA-LSTM and TA-LSTM for soil moisture prediction at the AAMU site across 5 depths. The 

feature importance in Fig. 10(a-e) shows a reasonable adaptation to the varying depth, demonstrating the 515 

effective feature selection capability of attention mechanisms. Moreover, the temporal importance in Fig. 

10(f-j) indicates the high utilization of recent temporal features, which is consistent with the real 

situations. This indicates the effective feature learning capacity of attention mechanisms. What’s more, 

these results contribute to a deeper understanding of the utilization mechanisms of feature and temporal 

information within the model. 520 
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Figure 10. Feature importance and temporal importance for soil moisture prediction at the AAMU site across 5 

depths. 

 

4.5 Comparisons of GAN-LSTM and LSTM 525 

In this section, we evaluate the impact of the GAN structure and adversarial training strategy on the 

standard LSTM model. LSTM and GAN-LSTM for soil moisture prediction are compared. The 𝑅ଶ 

values for the following 1, 3, and 7 days across ten sites at different depths are recorded in Table 6. Fig. 

11(a-e) shows the RMSE results of LSTM and GAN-LSTM at the Weslaco site.  

The results demonstrate that the GAN-LSTM achieves better performance than the standard LSTM in 530 

most situations, particularly in long-term prediction tasks (3-7 days). The application of GAN structure 

and training strategies enhances the prediction accuracy of LSTM. The adversarial training of GAN-

LSTM allows the model to not only learn from the data itself but also extract additional information 

embedded in the data. This helps address performance degradations due to overfitting on data mean 

square error. We can regard this training strategy as a general principle to enhance the performance of 535 

neural networks. However, the selection of hyperparameters in the loss function of GAN is crucial and 

currently requires manual adjustments. In future work, adaptive methods can be adopted to automatically 

adjust the GAN-LSTM loss function to increase training flexibility and prediction accuracy. 
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 540 

Figure 11. Top: RMSE comparisons between LSTM and GAN-LSTM at the Weslaco site at 5 depths: 0.05m(a), 

0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time (h). 

 

Table 6. The values of 𝑅ଶ between the predictions (1, 3, and 7 days) generated by LSTM and GAN-LSTM and the 

ground truth across ten sites at five depths. 545 

depth/m LSTM GAN-LSTM 
Rଶ Rଶ 

 1d 3d 7d 1d 3d 7d 

0.05 0.916  0.841  0.719  0.916  0.840  0.715  
0.10 0.924  0.854  0.753  0.926  0.856  0.755  

0.20 0.937  0.856  0.739  0.938  0.865  0.754  

0.50 0.941  0.881  0.754  0.942  0.889  0.777  

1.00 0.951  0.895  0.760  0.961  0.914  0.803  

 

Based on the computational cost comparisons presented in Fig. 11(g-h), both LSTM and GAN-LSTM 

exhibit similar computational costs. Consequently, in most scenarios, it is advisable to apply the GAN-

LSTM model to predict soil moisture dynamics. It improves the stability and prediction ability of the 

model without imposing a significant increase in computational costs. 550 
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4.6 Visualization Analysis 

 

Figure 12. SHAP summary plots for ten deep learning models. The samples are from the test set of the Monahans 555 

site at 0.0500m.  

 

In this study, we employ the SHAP (Lundberg et al., 2018) to quantify the contributions of input 

features to investigate the distinct mechanisms of data utilization in different network structures. Brief 

introductions to SHAP are provided in Appendix B. Fig. 12 illustrates the SHAP summary plots of these 560 

ten deep learning models utilizing samples from the test set of the Monahans site. The y-axis represents 

the input features ranked by importance. Each point shows the Shapley value of a specific feature in a 

sample, with the color indicating the value of the input feature. The plot clearly shows the identified main 

influential factors and established correlations between input features and soil moisture by the models.  

Fig. 12(a-c) displays the Shapley values of three basic deep learning models: CNN, LSTM, and 565 

Encoder. It can be observed that CNN shows a broader range of Shapley values compared to the others, 

indicating its greater feature expression capacity. This suggests that CNN focuses more on specific local 
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features, while LSTM emphasizes capturing global features. However, both CNN and LSTM tend to 

learn incorrect features and correlations. For instance, the learned positive correlation between the feature 

ST3 and soil moisture is contrary to the facts. The Encoder model, which aggregates features from all 570 

other inputs, appears to perform better in this aspect. Although the Shapley value of Encoder exhibits the 

lowest range, the important features Encoder identifies are derived from the recent input time series, 

which aligns better with real situations. This reflects the effective feature learning ability of attention 

mechanisms. Overall, each of these models—CNN, LSTM, and Encoder—possesses unique advantages 

in terms of data utilization.  575 

Fig. 12(d-f) compares the hybrid models of CNNs and LSTMs. The CNN-LSTM keeps high Shapley 

values in important features while showing minimal response to the others. This suggests that CNN-

LSTM tends to sequentially process the extracted crucial features, enabling itself to effectively capture 

both local data features and long-range dependencies, resembling more the CNN. LSTM-CNN shows 

similar Shapley values to the LSTM. By employing CNN to extract sequential modeling features, LSTM-580 

CNN emphases more on global features, resembling the characteristics of the LSTM. The Shapley value 

of the CNN-with-LSTM is the highest, displaying a heightened sensitivity to feature perturbations. This 

can be attributed to the repeated utilization of features in parallel networks. These three models represent 

different degrees of fusion between CNNs and LSTMs, and the hybrid architecture design depends on 

the specific task requirements and data characteristics. 585 

In the case of hybrid models that integrate attention mechanisms with LSTM, FA-LSTM, TA-LSTM, 

and FTA-LSTM, their Shapley values in Fig. 12(g-i) are found to differ slightly from that of LSTM. 

Considering the attention importance analysis discussed in section 4.4, we can infer that the attention 

mechanisms introduce slight adjustments to the time and feature attributions on the basis of the LSTM. 

Fig. 12 (j) also presents the Shapley value of GAN-LSTM. Through the resembled Shapley value, we 590 

can infer that the GAN-LSTM model introduces slight modifications during adversarial training, 

influencing some feature contributions to improve the prediction accuracy of the LSTM model. This 

demonstrates that adversarial training strategies contribute to the refinement and enhancement in models. 
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Figure 13. The t-SNE visualizations of the original input data (a) and encoded hidden states of 10 models (b-k) 595 

obtained from the test set of the LittleRiver site. The colors of the points indicate the corresponding soil moisture 

content values. 

 

Besides, t-SNE (Van der Maaten and Hinton, 2008), a dimension reduction and visualization method 

is employed to discover the structure and patterns in the high-dimensional data. When mapping data onto 600 

a two-dimensional space, t-SNE retains the relative distance relationships between the original data 

points, ensuring that similar samples are mapped closer to each other. The details of t-SNE can be found 

in Appendix B. Fig. 13 presents the t-SNE visualizations of the input data and the encoded hidden states 

from 10 models. The color of each point corresponds to the soil moisture content value. It is evident that 

through training, the low-dimensional embeddings of the encoded hidden states gradually transition from 605 

an initially irregular pattern to a more structured shape. However, the visualization shapes vary across 

the different models. Notably, LSTM-CNN, CNN-with-LSTM, and FTA-LSTM exhibit distinct 

clustering patterns in their embedding plots. Additionally, both GAN-LSTM and FA-LSTM demonstrate 

a tendency to gather the data points more closely, based on LSTM. These results suggest that different 

models possess varying capabilities when learning the input data features. To gain a more comprehensive 610 

understanding of their differences, further research is warranted in the future. 

 

5. Conclusions 
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In this research, we have conducted a comprehensive analysis of traditional machine learning models 

and various deep learning models for soil moisture predictions across different sites at 5 depths. Based 615 

on our comparisons of these models, we draw the following conclusions:  

In traditional machine learning, RF seems to be the most stable method in soil moisture prediction 

tasks. However, deep learning models have been found to possess stronger capabilities in processing time 

series data for better predictions. Among the three basic deep learning models, LSTM demonstrates a 

high level of accuracy because of its temporal information modeling capability, while 1D-CNN exhibits 620 

the lowest computational cost. Encoder also shows stable long-term forecasting ability. When 

considering the hybrid models, three combinations of CNN and LSTM did not enhance the prediction 

abilities in this task. Despite the attractiveness of hybridizing the benefits of CNN and LSTM, the results 

did not find notable advantages in soil moisture prediction in terms of accuracy and computational costs. 

However, the feature attention mechanism has a constant positive effect on LSTM, while temporal 625 

attention mechanisms have little significance. In addition, combining generative adversarial network 

structures and training strategies into LSTM models (GAN-LSTM) has been found to improve prediction 

accuracy, especially in long-term predictions. To summarize, FA-LSTM and GAN-LSTM are found to 

be the most stable and effective models for soil moisture prediction. Furthermore, this study attempts to 

provide a thorough analysis of models’ performances and advance the understanding of machine learning 630 

in soil moisture prediction. Through the Shapley analysis, we can infer the different data utilization ways 

of the 10 models. Besides, the t-SNE visualizations illustrate the varying encoding capabilities in 

different models.  

The results emphasize the importance of appropriate and effective neural network structure design for 

a given task. For soil moisture prediction, several principles of effective network design can be concluded. 635 

Firstly, leveraging the temporal modeling capability of LSTM is well-suited for soil moisture forecasting. 

Secondly, incorporating attention mechanisms properly facilitates efficient feature learning. The feature 

selection capability of attention mechanisms has been proven through the performance of the Encoder 

and the attention mechanisms and LSTM hybrid models. Lastly, applying special GAN structures and 

adversarial training strategies in models helps extract additional information embedded within data, 640 

which also potential for better soil moisture dynamics simulation.  

 This study provides a reference and lay the groundwork for the development of specialized deep 

learning models for soil moisture dynamics simulation. However, although data-driven models have 
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shown satisfactory performance, they cannot make long-term predictions precisely due to their lack of 

physical laws. In the future, the integration of known physical laws with deep learning models will 645 

become a promising research direction for soil moisture dynamics simulation. 
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Table A1. Parameters settings of the deep learning models. 

Network Type Layers Kernel_size Hidden_size (L) Activation function 

1D-CNN 

Convolution 2 32 Tanh 

Convolution 2 64 Tanh 

Flatten    

Fully-connected  1 Tanh 

CNN-LSTM 

Convolutional 2 32 Tanh 

Convolutional 2 64 Tanh 

LSTM  16 Sigmoid, Tanh 

LSTM -CNN 

LSTM  16 Sigmoid, Tanh 

Convolutional 3 32 Tanh 

Convolutional 3 64 Tanh 

Flatten    

Fully-connected  1 Tanh 

CNN-with-

LSTM 

CNN 

Convolutional 3 32 Tanh 

Convolutional 3 64 Tanh 

Flatten    

Fully-connected  1 Tanh 

LSTM 

LSTM  16 Sigmoid, Tanh 

Fully-connected  1 Tanh 

CNN-with-LSTM 

CONCAT    

Fully-connected  10 Tanh 

Fully-connected  1 Tanh 

FA-LSTM 
F-Attention  8 Sigmoid 

LSTM  16 Sigmoid, Tanh 

TA-LSTM 
LSTM  16 Sigmoid 

T-Attention  8 Relu 

FTA-LSTM 

F-Attention  8 Sigmoid 

LSTM  16 Sigmoid, Tanh 

T-Attention  8 Relu 

Fully-connected  1 Tanh 

GAN-LSTM 

Generator 

LSTM  16 Sigmoid, Tanh 

Fully-connected  1 Tanh 

Discriminator 

Fully-connected  1 Sigmoid 

RF: the default parameter values in RandomForestRegressor of the sklearn library 670 

SVR: C=1.0, ε=0.1, kernel γ = ‘poly’ 
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ELM: Hidden_size (L) =20 

LSTM: num_layers = 2, Hidden_size(L) = 16 

Encoder: d_k=d_v=4, d_model=feature=8, d_ff=20, n_heads=1 

 675 

Appendix B. Shapley additive explanations (SHAP)  

SHAP (Lundberg et al., 2018) is a game theoretic approach to explain the output of machine learning 

models. It measures the impact of the input feature on the prediction of an individual sample. SHAP 

employs the additive feature attribution method to provide a specific explanation: 

𝑓(𝑥) = 𝑔(𝑥ᇱ) = 𝜙଴ + ෍ 𝜙௜𝑥
ᇱ

ெ

௜ୀଵ

 (B1)

where 𝑓(𝑥) denotes the original model, 𝑔(𝑥) represents the explanation model with simplified input 680 

𝑥ᇱ, 𝑥ᇱ ∈ {0,1}ெ , M is the number of input features; through a mapping function, 𝑥 = ℎ௫(𝑥ᇱ) ; 𝜙௜ 

denotes the feature attribution of feature 𝑖. The explanation model 𝑔 has a unique solution: 

𝜙௜(𝑓, 𝑥) = ෍
|𝑧ᇱ|! (𝑀 − |𝑧ᇱ| − 1)!

𝑀!
௭ᇲ⊆௫ᇲ

[𝑓௫(𝑧ᇱ) − 𝑓௫(𝑧ᇱ\𝑖)] (B2)

where |𝑧ᇱ| is the non-zero entries number in 𝑧ᇱ, 𝑧ᇱ ⊆ 𝑥ᇱ; 𝑓(𝑥ᇱ) = 𝑓൫ℎ௫(𝑧ᇱ)൯ = 𝐸[𝑓(𝑧)|𝑧௦], S denotes 

the non-zero indexes set in 𝑧ᇱ. 

 685 

Appendix C. The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 

The t-SNE is a nonlinear dimension reduction technique that assumes the presence of a low-

dimensional nonlinear manifold within the high-dimensional data. Its primary task is to bring similar 

neighboring points close together in the low-dimensional representation. The working process of t-SNE 

can be divided into several steps: calculate the similarity between data points in high-dimensional space, 690 

and then calculate the corresponding probability of points in low-dimensional space. The similarity of 

points is calculated as conditional probability. If interested, more information can be found in the work 

of Van der Maaten and Hinton (2008). The following is the formula for calculating the similarity 𝑃௜௝  

and probability 𝑞௜௝  of the points: 

The similarity between data points in high-dimensional space: 695 

𝑃௜௝ = ൫𝑃௝|௜ + 𝑃௜|௝൯/2𝑁 (C1)

Corresponding probability of points in low-dimensional space: 

https://doi.org/10.5194/hess-2023-177
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



33 
 

𝑞௜௝ =
ቀ1 + ฮ𝑦௜ − 𝑦௝ฮ

ଶ
ቁ

ିଵ

∑ (1 + ‖𝑦௞ − 𝑦௟‖ଶ)ିଵ
௞ஷ௟

 (C2)

where 𝑃௜|௝ denotes the conditional probability of point 𝑖 picking point 𝑗 as its neighbor if neighbors 

are chosen according to their probability density under a Gaussian distribution centered at 𝑖, and 𝑁 

denotes the data points number. 𝑦௜  denotes the low-dimensional representation of point 𝑖 , and 

ฮ𝑦௜ − 𝑦௝ฮ denotes the Euclidean distance between 𝑦௜  and 𝑦௝.  700 
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